42 research outputs found

    PAN AIR: A computer program for predicting subsonic or supersonic linear potential flows about arbitrary configurations using a higher order panel method. Volume 2: User's manual (version 3.0)

    Get PDF
    A comprehensive description of user problem definition for the PAN AIR (Panel Aerodynamics) system is given. PAN AIR solves the 3-D linear integral equations of subsonic and supersonic flow. Influence coefficient methods are used which employ source and doublet panels as boundary surfaces. Both analysis and design boundary conditions can be used. This User's Manual describes the information needed to use the PAN AIR system. The structure and organization of PAN AIR are described, including the job control and module execution control languages for execution of the program system. The engineering input data are described, including the mathematical and physical modeling requirements. Version 3.0 strictly applies only to PAN AIR version 3.0. The major revisions include: (1) inputs and guidelines for the new FDP module (which calculates streamlines and offbody points); (2) nine new class 1 and class 2 boundary conditions to cover commonly used modeling practices, in particular the vorticity matching Kutta condition; (3) use of the CRAY solid state Storage Device (SSD); and (4) incorporation of errata and typo's together with additional explanation and guidelines

    PAN AIR: A computer program for predicting subsonic or supersonic linear potential flows about arbitrary configurations using a higher order panel method. Volume 4: Maintenance document (version 3.0)

    Get PDF
    The Maintenance Document Version 3.0 is a guide to the PAN AIR software system, a system which computes the subsonic or supersonic linear potential flow about a body of nearly arbitrary shape, using a higher order panel method. The document describes the overall system and each program module of the system. Sufficient detail is given for program maintenance, updating, and modification. It is assumed that the reader is familiar with programming and CRAY computer systems. The PAN AIR system was written in FORTRAN 4 language except for a few CAL language subroutines which exist in the PAN AIR library. Structured programming techniques were used to provide code documentation and maintainability. The operating systems accommodated are COS 1.11, COS 1.12, COS 1.13, and COS 1.14 on the CRAY 1S, 1M, and X-MP computing systems. The system is comprised of a data base management system, a program library, an execution control module, and nine separate FORTRAN technical modules. Each module calculates part of the posed PAN AIR problem. The data base manager is used to communicate between modules and within modules. The technical modules must be run in a prescribed fashion for each PAN AIR problem. In order to ease the problem of supplying the many JCL cards required to execute the modules, a set of CRAY procedures (PAPROCS) was created to automatically supply most of the JCL cards. Most of this document has not changed for Version 3.0. It now, however, strictly applies only to PAN AIR version 3.0. The major changes are: (1) additional sections covering the new FDP module (which calculates streamlines and offbody points); (2) a complete rewrite of the section on the MAG module; and (3) strict applicability to CRAY computing systems

    Bed topography of Jakobshavn Isbrae, Greenland, and Byrd Glacier, Antarctica

    Get PDF
    This is the published version. Copyright 2015 International Glaciological SocietyThis paper presents the bed topography of Jakobshavn Isbrae, Greenland, and Byrd Glacier, Antarctica, derived from sounding these glaciers with high-sensitivity radars. To understand the processes causing the speed-up and retreat of outlet glaciers, and to enable the development of next-generation ice-sheet models, we need information on bed topography and basal conditions. To this end, we performed measurements with the progressively improved Multichannel Coherent Radar Depth Sounder/Imager (MCoRDS/I). We processed the data from each antenna-array element using synthetic aperture radar algorithms to improve radar sensitivity and reduce along-track surface clutter. We then applied array and image-processing algorithms to extract the weak bed echoes buried in off-vertical scatter (cross-track surface clutter). At Jakobshavn Isbrae, we observed 2.7 km thick ice ∼30 km upstream of the calving front and ∼850 m thick ice at the calving front. We also observed echoes from multiple interfaces near the bed. We applied the MUSIC algorithm to the data to derive the direction of arrival of the signals. This analysis revealed that clutter is dominated by the ice surface at Jakobshavn Isbrae. At Byrd Glacier, we found ∼3.62 km thick ice, as well as a subglacial trench ∼3.05 km below sea level. We used ice thickness information derived from radar data in conjunction with surface elevation data to generate bed maps for these two critical glaciers. The performance of current radars must be improved further by ∼15 dB to fully sound the deepest part of Byrd Glacier. Unmanned aerial systems equipped with radars that can be flown over lines spaced as close as 5 m apart in the cross-track direction to synthesize a two-dimensional aperture would be ideal for collecting fine-resolution data over glaciers like Jakobshavn near their grounding lines

    Disruption of thalamic functional connectivity is a neural correlate of dexmedetomidine-induced unconsciousness

    Get PDF
    Understanding the neural basis of consciousness is fundamental to neuroscience research. Disruptions in cortico-cortical connectivity have been suggested as a primary mechanism of unconsciousness. By using a novel combination of positron emission tomography and functional magnetic resonance imaging, we studied anesthesia-induced unconsciousness and recovery using the α2-agonist dexmedetomidine. During unconsciousness, cerebral metabolic rate of glucose and cerebral blood flow were preferentially decreased in the thalamus, the Default Mode Network (DMN), and the bilateral Frontoparietal Networks (FPNs). Cortico-cortical functional connectivity within the DMN and FPNs was preserved. However, DMN thalamo-cortical functional connectivity was disrupted. Recovery from this state was associated with sustained reduction in cerebral blood flow and restored DMN thalamo-cortical functional connectivity. We report that loss of thalamo-cortical functional connectivity is sufficient to produce unconsciousness. DOI: http://dx.doi.org/10.7554/eLife.04499.00

    Higher levels of glutamate in the associative-striatum of subjects with prodromal symptoms of schizophrenia and patients with first-episode psychosis

    Get PDF
    The glutamatergic and dopaminergic systems are thought to be involved in the pathophysiology of schizophrenia. Their interaction has been widely documented and may have a role in the neurobiological basis of the disease. The aim of this study was to compare, using proton magnetic resonance spectroscopy (1H-MRS), glutamate levels in the precommissural dorsal-caudate (a dopamine-rich region) and the cerebellar cortex (negligible for dopamine) in the following: (1) 18 antipsychotic-naïve subjects with prodromal symptoms and considered to be at ultra high-risk for schizophrenia (UHR), (2) 18 antipsychotic-naïve first- episode psychosis patients (FEP), and (3) 40 age- and sex- matched healthy controls. All subjects underwent a 1H-MRS study using a 3Tesla scanner. Glutamate levels were quantified and corrected for the proportion of cerebrospinal fluid and percentage of gray matter in the voxel. The UHR and FEP groups showed higher levels of glutamate than controls, without differences between UHR and FEP. In the cerebellum, no differences were seen between the three groups. The higher glutamate level in the precommissural dorsal-caudate and not in the cerebellum of UHR and FEP suggests that a high glutamate level (a) precedes the onset of schizophrenia, and (b) is present in a dopamine-rich region previously implicated in the pathophysiology of schizophrenia.peer-reviewe

    Anesthetic action on the transmission delay between cortex and thalamus explains the beta-buzz observed under propofol anesthesia

    Get PDF
    In recent years, more and more surgeries under general anesthesia have been performed with the assistance of electroencephalogram (EEG) monitors. An increase in anesthetic concentration leads to characteristic changes in the power spectra of the EEG. Although tracking the anesthetic-induced changes in EEG rhythms can be employed to estimate the depth of anesthesia, their precise underlying mechanisms are still unknown. A prominent feature in the EEG of some patients is the emergence of a strong power peak in the β–frequency band, which moves to the α–frequency band while increasing the anesthetic concentration. This feature is called the beta-buzz. In the present study, we use a thalamo-cortical neural population feedback model to reproduce observed characteristic features in frontal EEG power obtained experimentally during propofol general anesthesia, such as this beta-buzz. First, we find that the spectral power peak in the α– and δ–frequency ranges depend on the decay rate constant of excitatory and inhibitory synapses, but the anesthetic action on synapses does not explain the beta-buzz. Moreover, considering the action of propofol on the transmission delay between cortex and thalamus, the model reveals that the beta-buzz may result from a prolongation of the transmission delay by increasing propofol concentration. A corresponding relationship between transmission delay and anesthetic blood concentration is derived. Finally, an analytical stability study demonstrates that increasing propofol concentration moves the systems resting state towards its stability threshold

    Variability and magnitude of brain glutamate levels in schizophrenia: a meta and mega-analysis

    Get PDF
    Glutamatergic dysfunction is implicated in schizophrenia pathoaetiology, but this may vary in extent between patients. It is unclear whether inter-individual variability in glutamate is greater in schizophrenia than the general population. We conducted meta-analyses to assess (1) variability of glutamate measures in patients relative to controls (log coefficient of variation ratio: CVR); (2) standardised mean differences (SMD) using Hedges g; (3) modal distribution of individual-level glutamate data (Hartigan’s unimodality dip test). MEDLINE and EMBASE databases were searched from inception to September 2022 for proton magnetic resonance spectroscopy (1H-MRS) studies reporting glutamate, glutamine or Glx in schizophrenia. 123 studies reporting on 8256 patients and 7532 controls were included. Compared with controls, patients demonstrated greater variability in glutamatergic metabolites in the medial frontal cortex (MFC, glutamate: CVR = 0.15, p < 0.001; glutamine: CVR = 0.15, p = 0.003; Glx: CVR = 0.11, p = 0.002), dorsolateral prefrontal cortex (glutamine: CVR = 0.14, p = 0.05; Glx: CVR = 0.25, p < 0.001) and thalamus (glutamate: CVR = 0.16, p = 0.008; Glx: CVR = 0.19, p = 0.008). Studies in younger, more symptomatic patients were associated with greater variability in the basal ganglia (BG glutamate with age: z = −0.03, p = 0.003, symptoms: z = 0.007, p = 0.02) and temporal lobe (glutamate with age: z = −0.03, p = 0.02), while studies with older, more symptomatic patients associated with greater variability in MFC (glutamate with age: z = 0.01, p = 0.02, glutamine with symptoms: z = 0.01, p = 0.02). For individual patient data, most studies showed a unimodal distribution of glutamatergic metabolites. Meta-analysis of mean differences found lower MFC glutamate (g = −0.15, p = 0.03), higher thalamic glutamine (g = 0.53, p < 0.001) and higher BG Glx in patients relative to controls (g = 0.28, p < 0.001). Proportion of males was negatively associated with MFC glutamate (z = −0.02, p < 0.001) and frontal white matter Glx (z = −0.03, p = 0.02) in patients relative to controls. Patient PANSS total score was positively associated with glutamate SMD in BG (z = 0.01, p = 0.01) and temporal lobe (z = 0.05, p = 0.008). Further research into the mechanisms underlying greater glutamatergic metabolite variability in schizophrenia and their clinical consequences may inform the identification of patient subgroups for future treatment strategies

    Particulate cadmium stable isotopes in the subarctic northeast Pacific reveal dynamic Cd cycling and a new isotopically light Cd sink

    No full text
    The nutrient-type distribution of dissolved cadmium concentrations (dCd) reflects a biological control in the global ocean, with uptake of dissolved Cd into biogenic particles in surface waters and regeneration of particulate Cd at depth. Depth profiles of dissolved Cd stable isotope composition (dδ114/110Cd), while sparse in coverage, exist for most of the major ocean basins, with spatial coverage improving through the efforts of the GEOTRACES program. However, a dearth of similarly resolved particulate δ114/110Cd(pδ114/110Cd) distributions limits our ability to use stable Cd isotopes to better understand Cd cycling in the global ocean. Here we present two pδ114/110Cd depth profiles from the subarctic northeast Pacific which demonstrate more complex δ114/110Cd cycling than dissolved profiles would suggest. Surface pδ114/110Cd, while lighter than surface dδ114/110Cd, is heavy relative to Pacific deepwater and crustal pδ114/110Cd components. Surface particulate and dissolved δ114/110Cd distributions are not well explained by closed-system Rayleigh fractionation following a single fractionation factor, in agreement with other recent studies in the Atlantic and Pacific Oceans. These variable fractionation trends in surface waters complicate the potential utility of δ114/110Cd as a paleoproductivity proxy. Particulate δ114/110Cd becomes lighter as particulate Cd is remineralized in the nutricline, reaching a minimum pδ114/110Cdof around −0.5‰, among the lightest values reported in natural telluric samples. This pδ114/110Cd trend within the nutricline might be explained by (1) multiple pools of particulate Cd with different isotopic compositions and labilities, or (2) by fractionation during particulate Cd remineralization. The observed shallow loss of heavy pδ114/110Cd above the winter mixed layer, rather than the formation of especially light surface pδ114/110Cd, may help to maintain the observed surface-to-deep dδ114/110Cd gradient. Below the mid-depth pδ114/110Cd minimum, pδ114/110Cd increases with depth toward the deepwater dδ114/110Cd value, possibly reflecting an isotopic equilibration between the particulate and dissolved phases. Dissolved δ114/110Cd profiles show uniform isotope composition at intermediate depths, while calculated remineralized pδ114/110Cd is isotopically variable and distinct from the bulk dissolved pool. This suggests that one-dimensional particle export and regeneration is not the primary control on dδ114/110Cd in the Pacific Ocean, but rather that regenerated δ114/110Cdis spatially or temporally variable and an advected dδ114/110Cd signal from subsurface Southern Ocean waters controls deep North Pacific dδ114/110Cd. Our results imply that export of isotopically light pδ114/110Cdto shelf sediments may act as an important oceanic sink, helping to balance the known sources and sinks of Cd with the global deepwater dδ114/110Cd
    corecore